Ableitung von $$$\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dt} \left(\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}\right)$$$.
Lösung
Wende die Konstantenfaktorregel $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ mit $$$c = \frac{\sqrt{6}}{3}$$$ und $$$f{\left(t \right)} = \cos{\left(t + \frac{\pi}{4} \right)}$$$ an:
$${\color{red}\left(\frac{d}{dt} \left(\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}\right)\right)} = {\color{red}\left(\frac{\sqrt{6}}{3} \frac{d}{dt} \left(\cos{\left(t + \frac{\pi}{4} \right)}\right)\right)}$$Die Funktion $$$\cos{\left(t + \frac{\pi}{4} \right)}$$$ ist die Komposition $$$f{\left(g{\left(t \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ und $$$g{\left(t \right)} = t + \frac{\pi}{4}$$$.
Wende die Kettenregel $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$ an:
$$\frac{\sqrt{6} {\color{red}\left(\frac{d}{dt} \left(\cos{\left(t + \frac{\pi}{4} \right)}\right)\right)}}{3} = \frac{\sqrt{6} {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dt} \left(t + \frac{\pi}{4}\right)\right)}}{3}$$Die Ableitung des Kosinus ist $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$$\frac{\sqrt{6} {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dt} \left(t + \frac{\pi}{4}\right)}{3} = \frac{\sqrt{6} {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dt} \left(t + \frac{\pi}{4}\right)}{3}$$Zurück zur ursprünglichen Variable:
$$- \frac{\sqrt{6} \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(t + \frac{\pi}{4}\right)}{3} = - \frac{\sqrt{6} \sin{\left({\color{red}\left(t + \frac{\pi}{4}\right)} \right)} \frac{d}{dt} \left(t + \frac{\pi}{4}\right)}{3}$$Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$$- \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{dt} \left(t + \frac{\pi}{4}\right)\right)}}{3} = - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{dt} \left(t\right) + \frac{d}{dt} \left(\frac{\pi}{4}\right)\right)}}{3}$$Wenden Sie die Potenzregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- \frac{\sqrt{6} \left({\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + \frac{d}{dt} \left(\frac{\pi}{4}\right)\right) \sin{\left(t + \frac{\pi}{4} \right)}}{3} = - \frac{\sqrt{6} \left({\color{red}\left(1\right)} + \frac{d}{dt} \left(\frac{\pi}{4}\right)\right) \sin{\left(t + \frac{\pi}{4} \right)}}{3}$$Die Ableitung einer Konstante ist $$$0$$$:
$$- \frac{\sqrt{6} \left({\color{red}\left(\frac{d}{dt} \left(\frac{\pi}{4}\right)\right)} + 1\right) \sin{\left(t + \frac{\pi}{4} \right)}}{3} = - \frac{\sqrt{6} \left({\color{red}\left(0\right)} + 1\right) \sin{\left(t + \frac{\pi}{4} \right)}}{3}$$Somit gilt $$$\frac{d}{dt} \left(\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}\right) = - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}$$$.
Antwort
$$$\frac{d}{dt} \left(\frac{\sqrt{6} \cos{\left(t + \frac{\pi}{4} \right)}}{3}\right) = - \frac{\sqrt{6} \sin{\left(t + \frac{\pi}{4} \right)}}{3}$$$A