Ableitung von $$$\sin{\left(\frac{x}{2} - 1 \right)}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right)$$$.
Lösung
Die Funktion $$$\sin{\left(\frac{x}{2} - 1 \right)}$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ und $$$g{\left(x \right)} = \frac{x}{2} - 1$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2} - 1\right)\right)}$$Die Ableitung des Sinus ist $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right)$$Zurück zur ursprünglichen Variable:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right) = \cos{\left({\color{red}\left(\frac{x}{2} - 1\right)} \right)} \frac{d}{dx} \left(\frac{x}{2} - 1\right)$$Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$$\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2} - 1\right)\right)} = \cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right) - \frac{d}{dx} \left(1\right)\right)}$$Die Ableitung einer Konstante ist $$$0$$$:
$$\left(- {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(\frac{x}{2}\right)\right) \cos{\left(\frac{x}{2} - 1 \right)} = \left(- {\color{red}\left(0\right)} + \frac{d}{dx} \left(\frac{x}{2}\right)\right) \cos{\left(\frac{x}{2} - 1 \right)}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = \frac{1}{2}$$$ und $$$f{\left(x \right)} = x$$$ an:
$$\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = \cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{\cos{\left(\frac{x}{2} - 1 \right)} {\color{red}\left(1\right)}}{2}$$Somit gilt $$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right) = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2}$$$.
Antwort
$$$\frac{d}{dx} \left(\sin{\left(\frac{x}{2} - 1 \right)}\right) = \frac{\cos{\left(\frac{x}{2} - 1 \right)}}{2}$$$A