Ableitung von $$$\sin{\left(x y \right)}$$$ nach $$$y$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dy} \left(\sin{\left(x y \right)}\right)$$$.
Lösung
Die Funktion $$$\sin{\left(x y \right)}$$$ ist die Komposition $$$f{\left(g{\left(y \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ und $$$g{\left(y \right)} = x y$$$.
Wende die Kettenregel $$$\frac{d}{dy} \left(f{\left(g{\left(y \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dy} \left(g{\left(y \right)}\right)$$$ an:
$${\color{red}\left(\frac{d}{dy} \left(\sin{\left(x y \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dy} \left(x y\right)\right)}$$Die Ableitung des Sinus ist $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dy} \left(x y\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dy} \left(x y\right)$$Zurück zur ursprünglichen Variable:
$$\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dy} \left(x y\right) = \cos{\left({\color{red}\left(x y\right)} \right)} \frac{d}{dy} \left(x y\right)$$Wende die Konstantenfaktorregel $$$\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right)$$$ mit $$$c = x$$$ und $$$f{\left(y \right)} = y$$$ an:
$$\cos{\left(x y \right)} {\color{red}\left(\frac{d}{dy} \left(x y\right)\right)} = \cos{\left(x y \right)} {\color{red}\left(x \frac{d}{dy} \left(y\right)\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dy} \left(y\right) = 1$$$:
$$x \cos{\left(x y \right)} {\color{red}\left(\frac{d}{dy} \left(y\right)\right)} = x \cos{\left(x y \right)} {\color{red}\left(1\right)}$$Somit gilt $$$\frac{d}{dy} \left(\sin{\left(x y \right)}\right) = x \cos{\left(x y \right)}$$$.
Antwort
$$$\frac{d}{dy} \left(\sin{\left(x y \right)}\right) = x \cos{\left(x y \right)}$$$A