Ableitung von $$$\pi t$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dt} \left(\pi t\right)$$$.
Lösung
Wende die Konstantenfaktorregel $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ mit $$$c = \pi$$$ und $$$f{\left(t \right)} = t$$$ an:
$${\color{red}\left(\frac{d}{dt} \left(\pi t\right)\right)} = {\color{red}\left(\pi \frac{d}{dt} \left(t\right)\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\pi {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = \pi {\color{red}\left(1\right)}$$Somit gilt $$$\frac{d}{dt} \left(\pi t\right) = \pi$$$.
Antwort
$$$\frac{d}{dt} \left(\pi t\right) = \pi$$$A