Ableitung von $$$\ln\left(x^{3}\right)$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(\ln\left(x^{3}\right)\right)$$$.
Lösung
Die Funktion $$$\ln\left(x^{3}\right)$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \ln\left(u\right)$$$ und $$$g{\left(x \right)} = x^{3}$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{d}{dx} \left(3 \ln\left(x\right)\right)$$Die Ableitung des natürlichen Logarithmus ist $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{d}{dx} \left(3 \ln\left(x\right)\right)$$Zurück zur ursprünglichen Variable:
$$\frac{d}{dx} \left(3 \ln\left(x\right)\right) = \frac{d}{dx} \left(3 \ln\left(x\right)\right)$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 3$$$ und $$$f{\left(x \right)} = \ln\left(x\right)$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(3 \ln\left(x\right)\right)\right)} = {\color{red}\left(3 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$Die Ableitung des natürlichen Logarithmus ist $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$3 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 3 {\color{red}\left(\frac{1}{x}\right)}$$Somit gilt $$$\frac{d}{dx} \left(\ln\left(x^{3}\right)\right) = \frac{3}{x}$$$.
Antwort
$$$\frac{d}{dx} \left(\ln\left(x^{3}\right)\right) = \frac{3}{x}$$$A