Ableitung von $$$\ln\left(\frac{t}{t + 1}\right)$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)$$$.
Lösung
Die Funktion $$$\ln\left(\frac{t}{t + 1}\right)$$$ ist die Komposition $$$f{\left(g{\left(t \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \ln\left(u\right)$$$ und $$$g{\left(t \right)} = \frac{t}{t + 1}$$$.
Wende die Kettenregel $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$ an:
$${\color{red}\left(\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}$$Die Ableitung des natürlichen Logarithmus ist $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dt} \left(\frac{t}{t + 1}\right)$$Zurück zur ursprünglichen Variable:
$$\frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dt} \left(\frac{t}{t + 1}\right)}{{\color{red}\left(\frac{t}{t + 1}\right)}}$$Wende die Quotientenregel $$$\frac{d}{dt} \left(\frac{f{\left(t \right)}}{g{\left(t \right)}}\right) = \frac{\frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} - f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)}{g^{2}{\left(t \right)}}$$$ auf $$$f{\left(t \right)} = t$$$ und $$$g{\left(t \right)} = t + 1$$$ an:
$$\frac{\left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(\frac{t}{t + 1}\right)\right)}}{t} = \frac{\left(t + 1\right) {\color{red}\left(\frac{\frac{d}{dt} \left(t\right) \left(t + 1\right) - t \frac{d}{dt} \left(t + 1\right)}{\left(t + 1\right)^{2}}\right)}}{t}$$Wenden Sie die Potenzregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{t \left(t + 1\right)} = \frac{- t \frac{d}{dt} \left(t + 1\right) + \left(t + 1\right) {\color{red}\left(1\right)}}{t \left(t + 1\right)}$$Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t + 1\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right) + \frac{d}{dt} \left(1\right)\right)} + t + 1}{t \left(t + 1\right)}$$Die Ableitung einer Konstante ist $$$0$$$:
$$\frac{- t \left({\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)} = \frac{- t \left({\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t + 1}{t \left(t + 1\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$\frac{- t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t + 1}{t \left(t + 1\right)} = \frac{- t {\color{red}\left(1\right)} + t + 1}{t \left(t + 1\right)}$$Somit gilt $$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$.
Antwort
$$$\frac{d}{dt} \left(\ln\left(\frac{t}{t + 1}\right)\right) = \frac{1}{t \left(t + 1\right)}$$$A