Ableitung von $$$\cos{\left(e^{t} \right)}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right)$$$.
Lösung
Die Funktion $$$\cos{\left(e^{t} \right)}$$$ ist die Komposition $$$f{\left(g{\left(t \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ und $$$g{\left(t \right)} = e^{t}$$$.
Wende die Kettenregel $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$ an:
$${\color{red}\left(\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dt} \left(e^{t}\right)\right)}$$Die Ableitung des Kosinus ist $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dt} \left(e^{t}\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dt} \left(e^{t}\right)$$Zurück zur ursprünglichen Variable:
$$- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(e^{t}\right) = - \sin{\left({\color{red}\left(e^{t}\right)} \right)} \frac{d}{dt} \left(e^{t}\right)$$Die Ableitung der Exponentialfunktion ist $$$\frac{d}{dt} \left(e^{t}\right) = e^{t}$$$:
$$- \sin{\left(e^{t} \right)} {\color{red}\left(\frac{d}{dt} \left(e^{t}\right)\right)} = - \sin{\left(e^{t} \right)} {\color{red}\left(e^{t}\right)}$$Somit gilt $$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right) = - e^{t} \sin{\left(e^{t} \right)}$$$.
Antwort
$$$\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right) = - e^{t} \sin{\left(e^{t} \right)}$$$A