Ableitung von $$$\operatorname{acosh}{\left(x \right)}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right)$$$.
Lösung
Die Ableitung des inversen hyperbolischen Kosinus ist $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{1}{\sqrt{x - 1} \sqrt{x + 1}}\right)}$$Somit gilt $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$.
Antwort
$$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$A
Please try a new game Rotatly