Ableitung von $$$6 u + v$$$ nach $$$u$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{du} \left(6 u + v\right)$$$.
Lösung
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{du} \left(6 u + v\right)\right)} = {\color{red}\left(\frac{d}{du} \left(6 u\right) + \frac{dv}{du}\right)}$$Wende die Konstantenfaktorregel $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ mit $$$c = 6$$$ und $$$f{\left(u \right)} = u$$$ an:
$${\color{red}\left(\frac{d}{du} \left(6 u\right)\right)} + \frac{dv}{du} = {\color{red}\left(6 \frac{d}{du} \left(u\right)\right)} + \frac{dv}{du}$$Wenden Sie die Potenzregel $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{du} \left(u\right) = 1$$$:
$$6 {\color{red}\left(\frac{d}{du} \left(u\right)\right)} + \frac{dv}{du} = 6 {\color{red}\left(1\right)} + \frac{dv}{du}$$Die Ableitung einer Konstante ist $$$0$$$:
$${\color{red}\left(\frac{dv}{du}\right)} + 6 = {\color{red}\left(0\right)} + 6$$Somit gilt $$$\frac{d}{du} \left(6 u + v\right) = 6$$$.
Antwort
$$$\frac{d}{du} \left(6 u + v\right) = 6$$$A