Ableitung von $$$2 - \frac{1}{t^{2}}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)$$$.
Lösung
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(2\right) - \frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)}$$Wende die Potenzregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ mit $$$n = -2$$$ an:
$$- {\color{red}\left(\frac{d}{dt} \left(\frac{1}{t^{2}}\right)\right)} + \frac{d}{dt} \left(2\right) = - {\color{red}\left(- \frac{2}{t^{3}}\right)} + \frac{d}{dt} \left(2\right)$$Die Ableitung einer Konstante ist $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(2\right)\right)} + \frac{2}{t^{3}} = {\color{red}\left(0\right)} + \frac{2}{t^{3}}$$Somit gilt $$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$.
Antwort
$$$\frac{d}{dt} \left(2 - \frac{1}{t^{2}}\right) = \frac{2}{t^{3}}$$$A
Please try a new game Rotatly