Ableitung von $$$2 n$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dn} \left(2 n\right)$$$.
Lösung
Wende die Konstantenfaktorregel $$$\frac{d}{dn} \left(c f{\left(n \right)}\right) = c \frac{d}{dn} \left(f{\left(n \right)}\right)$$$ mit $$$c = 2$$$ und $$$f{\left(n \right)} = n$$$ an:
$${\color{red}\left(\frac{d}{dn} \left(2 n\right)\right)} = {\color{red}\left(2 \frac{d}{dn} \left(n\right)\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dn} \left(n^{m}\right) = m n^{m - 1}$$$ mit $$$m = 1$$$ an, mit anderen Worten, $$$\frac{d}{dn} \left(n\right) = 1$$$:
$$2 {\color{red}\left(\frac{d}{dn} \left(n\right)\right)} = 2 {\color{red}\left(1\right)}$$Somit gilt $$$\frac{d}{dn} \left(2 n\right) = 2$$$.
Antwort
$$$\frac{d}{dn} \left(2 n\right) = 2$$$A
Please try a new game Rotatly