Ableitung von $$$1 - \sin{\left(\frac{t}{2} \right)}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dt} \left(1 - \sin{\left(\frac{t}{2} \right)}\right)$$$.
Lösung
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{dt} \left(1 - \sin{\left(\frac{t}{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(1\right) - \frac{d}{dt} \left(\sin{\left(\frac{t}{2} \right)}\right)\right)}$$Die Ableitung einer Konstante ist $$$0$$$:
$${\color{red}\left(\frac{d}{dt} \left(1\right)\right)} - \frac{d}{dt} \left(\sin{\left(\frac{t}{2} \right)}\right) = {\color{red}\left(0\right)} - \frac{d}{dt} \left(\sin{\left(\frac{t}{2} \right)}\right)$$Die Funktion $$$\sin{\left(\frac{t}{2} \right)}$$$ ist die Komposition $$$f{\left(g{\left(t \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ und $$$g{\left(t \right)} = \frac{t}{2}$$$.
Wende die Kettenregel $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$ an:
$$- {\color{red}\left(\frac{d}{dt} \left(\sin{\left(\frac{t}{2} \right)}\right)\right)} = - {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dt} \left(\frac{t}{2}\right)\right)}$$Die Ableitung des Sinus ist $$$\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}$$$:
$$- {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dt} \left(\frac{t}{2}\right) = - {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dt} \left(\frac{t}{2}\right)$$Zurück zur ursprünglichen Variable:
$$- \cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(\frac{t}{2}\right) = - \cos{\left({\color{red}\left(\frac{t}{2}\right)} \right)} \frac{d}{dt} \left(\frac{t}{2}\right)$$Wende die Konstantenfaktorregel $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ mit $$$c = \frac{1}{2}$$$ und $$$f{\left(t \right)} = t$$$ an:
$$- \cos{\left(\frac{t}{2} \right)} {\color{red}\left(\frac{d}{dt} \left(\frac{t}{2}\right)\right)} = - \cos{\left(\frac{t}{2} \right)} {\color{red}\left(\frac{\frac{d}{dt} \left(t\right)}{2}\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- \frac{\cos{\left(\frac{t}{2} \right)} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)}}{2} = - \frac{\cos{\left(\frac{t}{2} \right)} {\color{red}\left(1\right)}}{2}$$Somit gilt $$$\frac{d}{dt} \left(1 - \sin{\left(\frac{t}{2} \right)}\right) = - \frac{\cos{\left(\frac{t}{2} \right)}}{2}$$$.
Antwort
$$$\frac{d}{dt} \left(1 - \sin{\left(\frac{t}{2} \right)}\right) = - \frac{\cos{\left(\frac{t}{2} \right)}}{2}$$$A