Ableitung von $$$\frac{x^{3} - 2 x^{2}}{x^{2} + 1}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right)$$$.
Lösung
Wende die Quotientenregel $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$ auf $$$f{\left(x \right)} = x^{3} - 2 x^{2}$$$ und $$$g{\left(x \right)} = x^{2} + 1$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x^{3} - 2 x^{2}\right) \left(x^{2} + 1\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}\right)}$$Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$$\frac{\left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x^{3} - 2 x^{2}\right)\right)} - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(2 x^{2}\right)\right)} - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 3$$$ an:
$$\frac{\left(x^{2} + 1\right) \left({\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} - \frac{d}{dx} \left(2 x^{2}\right)\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left({\color{red}\left(3 x^{2}\right)} - \frac{d}{dx} \left(2 x^{2}\right)\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 2$$$ und $$$f{\left(x \right)} = x^{2}$$$ an:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - {\color{red}\left(\frac{d}{dx} \left(2 x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - {\color{red}\left(2 \frac{d}{dx} \left(x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 2$$$ an:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 2 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 2 {\color{red}\left(2 x\right)}\right) - \left(x^{3} - 2 x^{2}\right) \frac{d}{dx} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2}}$$Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2} + 1\right)\right)}}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) + \frac{d}{dx} \left(1\right)\right)}}{\left(x^{2} + 1\right)^{2}}$$Die Ableitung einer Konstante ist $$$0$$$:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) \left({\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) \left({\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{\left(x^{2} + 1\right)^{2}}$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 2$$$ an:
$$\frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{\left(x^{2} + 1\right)^{2}} = \frac{\left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right) - \left(x^{3} - 2 x^{2}\right) {\color{red}\left(2 x\right)}}{\left(x^{2} + 1\right)^{2}}$$Vereinfachen:
$$\frac{- 2 x \left(x^{3} - 2 x^{2}\right) + \left(x^{2} + 1\right) \left(3 x^{2} - 4 x\right)}{\left(x^{2} + 1\right)^{2}} = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$Somit gilt $$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right) = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$$.
Antwort
$$$\frac{d}{dx} \left(\frac{x^{3} - 2 x^{2}}{x^{2} + 1}\right) = \frac{x \left(x - 1\right) \left(x^{2} + x + 4\right)}{\left(x^{2} + 1\right)^{2}}$$$A