Integral of $$$\sqrt{a} - 1$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(\sqrt{a} - 1\right)\, dx$$$.
Solution
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=\sqrt{a} - 1$$$:
$${\color{red}{\int{\left(\sqrt{a} - 1\right)d x}}} = {\color{red}{x \left(\sqrt{a} - 1\right)}}$$
Therefore,
$$\int{\left(\sqrt{a} - 1\right)d x} = x \left(\sqrt{a} - 1\right)$$
Add the constant of integration:
$$\int{\left(\sqrt{a} - 1\right)d x} = x \left(\sqrt{a} - 1\right)+C$$
Answer
$$$\int \left(\sqrt{a} - 1\right)\, dx = x \left(\sqrt{a} - 1\right) + C$$$A
Please try a new game Rotatly