$$$\sqrt{a} - 1$$$ 关于$$$x$$$的积分
您的输入
求$$$\int \left(\sqrt{a} - 1\right)\, dx$$$。
解答
应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=\sqrt{a} - 1$$$:
$${\color{red}{\int{\left(\sqrt{a} - 1\right)d x}}} = {\color{red}{x \left(\sqrt{a} - 1\right)}}$$
因此,
$$\int{\left(\sqrt{a} - 1\right)d x} = x \left(\sqrt{a} - 1\right)$$
加上积分常数:
$$\int{\left(\sqrt{a} - 1\right)d x} = x \left(\sqrt{a} - 1\right)+C$$
答案
$$$\int \left(\sqrt{a} - 1\right)\, dx = x \left(\sqrt{a} - 1\right) + C$$$A
Please try a new game Rotatly