Integral of $$$\tan{\left(t \right)} \sec{\left(t \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \tan{\left(t \right)} \sec{\left(t \right)}\, dt$$$.
Solution
The integral of $$$\tan{\left(t \right)} \sec{\left(t \right)}$$$ is $$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}$$$:
$${\color{red}{\int{\tan{\left(t \right)} \sec{\left(t \right)} d t}}} = {\color{red}{\sec{\left(t \right)}}}$$
Therefore,
$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}$$
Add the constant of integration:
$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}+C$$
Answer
$$$\int \tan{\left(t \right)} \sec{\left(t \right)}\, dt = \sec{\left(t \right)} + C$$$A