Integral de $$$\tan{\left(t \right)} \sec{\left(t \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \tan{\left(t \right)} \sec{\left(t \right)}\, dt$$$.
Solución
La integral de $$$\tan{\left(t \right)} \sec{\left(t \right)}$$$ es $$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}$$$:
$${\color{red}{\int{\tan{\left(t \right)} \sec{\left(t \right)} d t}}} = {\color{red}{\sec{\left(t \right)}}}$$
Por lo tanto,
$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}$$
Añade la constante de integración:
$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}+C$$
Respuesta
$$$\int \tan{\left(t \right)} \sec{\left(t \right)}\, dt = \sec{\left(t \right)} + C$$$A