Integral dari $$$\tan{\left(t \right)} \sec{\left(t \right)}$$$
Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar
Masukan Anda
Temukan $$$\int \tan{\left(t \right)} \sec{\left(t \right)}\, dt$$$.
Solusi
Integral dari $$$\tan{\left(t \right)} \sec{\left(t \right)}$$$ adalah $$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}$$$:
$${\color{red}{\int{\tan{\left(t \right)} \sec{\left(t \right)} d t}}} = {\color{red}{\sec{\left(t \right)}}}$$
Oleh karena itu,
$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}$$
Tambahkan konstanta integrasi:
$$\int{\tan{\left(t \right)} \sec{\left(t \right)} d t} = \sec{\left(t \right)}+C$$
Jawaban
$$$\int \tan{\left(t \right)} \sec{\left(t \right)}\, dt = \sec{\left(t \right)} + C$$$A