Integral of $$$\frac{1}{\sqrt{u^{2} + 1}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\sqrt{u^{2} + 1}}\, du$$$.
Solution
The integral of $$$\frac{1}{\sqrt{u^{2} + 1}}$$$ is $$$\int{\frac{1}{\sqrt{u^{2} + 1}} d u} = \operatorname{asinh}{\left(u \right)}$$$:
$${\color{red}{\int{\frac{1}{\sqrt{u^{2} + 1}} d u}}} = {\color{red}{\operatorname{asinh}{\left(u \right)}}}$$
Therefore,
$$\int{\frac{1}{\sqrt{u^{2} + 1}} d u} = \operatorname{asinh}{\left(u \right)}$$
Add the constant of integration:
$$\int{\frac{1}{\sqrt{u^{2} + 1}} d u} = \operatorname{asinh}{\left(u \right)}+C$$
Answer
$$$\int \frac{1}{\sqrt{u^{2} + 1}}\, du = \operatorname{asinh}{\left(u \right)} + C$$$A