Integral of $$$- e^{- t}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- e^{- t}\right)\, dt$$$.
Solution
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=-1$$$ and $$$f{\left(t \right)} = e^{- t}$$$:
$${\color{red}{\int{\left(- e^{- t}\right)d t}}} = {\color{red}{\left(- \int{e^{- t} d t}\right)}}$$
Let $$$u=- t$$$.
Then $$$du=\left(- t\right)^{\prime }dt = - dt$$$ (steps can be seen »), and we have that $$$dt = - du$$$.
The integral can be rewritten as
$$- {\color{red}{\int{e^{- t} d t}}} = - {\color{red}{\int{\left(- e^{u}\right)d u}}}$$
Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = e^{u}$$$:
$$- {\color{red}{\int{\left(- e^{u}\right)d u}}} = - {\color{red}{\left(- \int{e^{u} d u}\right)}}$$
The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:
$${\color{red}{\int{e^{u} d u}}} = {\color{red}{e^{u}}}$$
Recall that $$$u=- t$$$:
$$e^{{\color{red}{u}}} = e^{{\color{red}{\left(- t\right)}}}$$
Therefore,
$$\int{\left(- e^{- t}\right)d t} = e^{- t}$$
Add the constant of integration:
$$\int{\left(- e^{- t}\right)d t} = e^{- t}+C$$
Answer
$$$\int \left(- e^{- t}\right)\, dt = e^{- t} + C$$$A