$$$2 t e^{- 5 t}$$$ 的積分

此計算器將求出 $$$2 t e^{- 5 t}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int 2 t e^{- 5 t}\, dt$$$

解答

套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=2$$$$$$f{\left(t \right)} = t e^{- 5 t}$$$

$${\color{red}{\int{2 t e^{- 5 t} d t}}} = {\color{red}{\left(2 \int{t e^{- 5 t} d t}\right)}}$$

對於積分 $$$\int{t e^{- 5 t} d t}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=t$$$$$$\operatorname{dv}=e^{- 5 t} dt$$$

$$$\operatorname{du}=\left(t\right)^{\prime }dt=1 dt$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{- 5 t} d t}=- \frac{e^{- 5 t}}{5}$$$(步驟見 »)。

因此,

$$2 {\color{red}{\int{t e^{- 5 t} d t}}}=2 {\color{red}{\left(t \cdot \left(- \frac{e^{- 5 t}}{5}\right)-\int{\left(- \frac{e^{- 5 t}}{5}\right) \cdot 1 d t}\right)}}=2 {\color{red}{\left(- \frac{t e^{- 5 t}}{5} - \int{\left(- \frac{e^{- 5 t}}{5}\right)d t}\right)}}$$

套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=- \frac{1}{5}$$$$$$f{\left(t \right)} = e^{- 5 t}$$$

$$- \frac{2 t e^{- 5 t}}{5} - 2 {\color{red}{\int{\left(- \frac{e^{- 5 t}}{5}\right)d t}}} = - \frac{2 t e^{- 5 t}}{5} - 2 {\color{red}{\left(- \frac{\int{e^{- 5 t} d t}}{5}\right)}}$$

$$$u=- 5 t$$$

$$$du=\left(- 5 t\right)^{\prime }dt = - 5 dt$$$ (步驟見»),並可得 $$$dt = - \frac{du}{5}$$$

因此,

$$- \frac{2 t e^{- 5 t}}{5} + \frac{2 {\color{red}{\int{e^{- 5 t} d t}}}}{5} = - \frac{2 t e^{- 5 t}}{5} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{5}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=- \frac{1}{5}$$$$$$f{\left(u \right)} = e^{u}$$$

$$- \frac{2 t e^{- 5 t}}{5} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{5} = - \frac{2 t e^{- 5 t}}{5} + \frac{2 {\color{red}{\left(- \frac{\int{e^{u} d u}}{5}\right)}}}{5}$$

指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$

$$- \frac{2 t e^{- 5 t}}{5} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{25} = - \frac{2 t e^{- 5 t}}{5} - \frac{2 {\color{red}{e^{u}}}}{25}$$

回顧一下 $$$u=- 5 t$$$

$$- \frac{2 t e^{- 5 t}}{5} - \frac{2 e^{{\color{red}{u}}}}{25} = - \frac{2 t e^{- 5 t}}{5} - \frac{2 e^{{\color{red}{\left(- 5 t\right)}}}}{25}$$

因此,

$$\int{2 t e^{- 5 t} d t} = - \frac{2 t e^{- 5 t}}{5} - \frac{2 e^{- 5 t}}{25}$$

化簡:

$$\int{2 t e^{- 5 t} d t} = \frac{2 \left(- 5 t - 1\right) e^{- 5 t}}{25}$$

加上積分常數:

$$\int{2 t e^{- 5 t} d t} = \frac{2 \left(- 5 t - 1\right) e^{- 5 t}}{25}+C$$

答案

$$$\int 2 t e^{- 5 t}\, dt = \frac{2 \left(- 5 t - 1\right) e^{- 5 t}}{25} + C$$$A


Please try a new game Rotatly