Integralen av $$$2 t e^{- 5 t}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$2 t e^{- 5 t}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int 2 t e^{- 5 t}\, dt$$$.

Lösning

Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=2$$$ och $$$f{\left(t \right)} = t e^{- 5 t}$$$:

$${\color{red}{\int{2 t e^{- 5 t} d t}}} = {\color{red}{\left(2 \int{t e^{- 5 t} d t}\right)}}$$

För integralen $$$\int{t e^{- 5 t} d t}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Låt $$$\operatorname{u}=t$$$ och $$$\operatorname{dv}=e^{- 5 t} dt$$$.

Då gäller $$$\operatorname{du}=\left(t\right)^{\prime }dt=1 dt$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{- 5 t} d t}=- \frac{e^{- 5 t}}{5}$$$ (stegen kan ses »).

Alltså,

$$2 {\color{red}{\int{t e^{- 5 t} d t}}}=2 {\color{red}{\left(t \cdot \left(- \frac{e^{- 5 t}}{5}\right)-\int{\left(- \frac{e^{- 5 t}}{5}\right) \cdot 1 d t}\right)}}=2 {\color{red}{\left(- \frac{t e^{- 5 t}}{5} - \int{\left(- \frac{e^{- 5 t}}{5}\right)d t}\right)}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=- \frac{1}{5}$$$ och $$$f{\left(t \right)} = e^{- 5 t}$$$:

$$- \frac{2 t e^{- 5 t}}{5} - 2 {\color{red}{\int{\left(- \frac{e^{- 5 t}}{5}\right)d t}}} = - \frac{2 t e^{- 5 t}}{5} - 2 {\color{red}{\left(- \frac{\int{e^{- 5 t} d t}}{5}\right)}}$$

Låt $$$u=- 5 t$$$ vara.

$$$du=\left(- 5 t\right)^{\prime }dt = - 5 dt$$$ (stegen kan ses »), och vi har att $$$dt = - \frac{du}{5}$$$.

Alltså,

$$- \frac{2 t e^{- 5 t}}{5} + \frac{2 {\color{red}{\int{e^{- 5 t} d t}}}}{5} = - \frac{2 t e^{- 5 t}}{5} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{5}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=- \frac{1}{5}$$$ och $$$f{\left(u \right)} = e^{u}$$$:

$$- \frac{2 t e^{- 5 t}}{5} + \frac{2 {\color{red}{\int{\left(- \frac{e^{u}}{5}\right)d u}}}}{5} = - \frac{2 t e^{- 5 t}}{5} + \frac{2 {\color{red}{\left(- \frac{\int{e^{u} d u}}{5}\right)}}}{5}$$

Integralen av den exponentiella funktionen är $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{2 t e^{- 5 t}}{5} - \frac{2 {\color{red}{\int{e^{u} d u}}}}{25} = - \frac{2 t e^{- 5 t}}{5} - \frac{2 {\color{red}{e^{u}}}}{25}$$

Kom ihåg att $$$u=- 5 t$$$:

$$- \frac{2 t e^{- 5 t}}{5} - \frac{2 e^{{\color{red}{u}}}}{25} = - \frac{2 t e^{- 5 t}}{5} - \frac{2 e^{{\color{red}{\left(- 5 t\right)}}}}{25}$$

Alltså,

$$\int{2 t e^{- 5 t} d t} = - \frac{2 t e^{- 5 t}}{5} - \frac{2 e^{- 5 t}}{25}$$

Förenkla:

$$\int{2 t e^{- 5 t} d t} = \frac{2 \left(- 5 t - 1\right) e^{- 5 t}}{25}$$

Lägg till integrationskonstanten:

$$\int{2 t e^{- 5 t} d t} = \frac{2 \left(- 5 t - 1\right) e^{- 5 t}}{25}+C$$

Svar

$$$\int 2 t e^{- 5 t}\, dt = \frac{2 \left(- 5 t - 1\right) e^{- 5 t}}{25} + C$$$A


Please try a new game Rotatly