$$$\frac{1}{a^{2} + x^{2}}$$$ 對 $$$x$$$ 的積分
您的輸入
求$$$\int \frac{1}{a^{2} + x^{2}}\, dx$$$。
解答
令 $$$u=\frac{x}{\left|{a}\right|}$$$。
則 $$$du=\left(\frac{x}{\left|{a}\right|}\right)^{\prime }dx = \frac{dx}{\left|{a}\right|}$$$ (步驟見»),並可得 $$$dx = \left|{a}\right| du$$$。
所以,
$${\color{red}{\int{\frac{1}{a^{2} + x^{2}} d x}}} = {\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(u^{2} + 1\right)} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{\left|{a}\right|}{a^{2}}$$$ 與 $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:
$${\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(u^{2} + 1\right)} d u}}} = {\color{red}{\frac{\left|{a}\right| \int{\frac{1}{u^{2} + 1} d u}}{a^{2}}}}$$
$$$\frac{1}{u^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{\left|{a}\right| {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{a^{2}} = \frac{\left|{a}\right| {\color{red}{\operatorname{atan}{\left(u \right)}}}}{a^{2}}$$
回顧一下 $$$u=\frac{x}{\left|{a}\right|}$$$:
$$\frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{u}} \right)}}{a^{2}} = \frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{\frac{x}{\left|{a}\right|}}} \right)}}{a^{2}}$$
因此,
$$\int{\frac{1}{a^{2} + x^{2}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}}$$
加上積分常數:
$$\int{\frac{1}{a^{2} + x^{2}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}}+C$$
答案
$$$\int \frac{1}{a^{2} + x^{2}}\, dx = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}} + C$$$A