Integral de $$$\frac{1}{a^{2} + x^{2}}$$$ con respecto a $$$x$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \frac{1}{a^{2} + x^{2}}\, dx$$$.
Solución
Sea $$$u=\frac{x}{\left|{a}\right|}$$$.
Entonces $$$du=\left(\frac{x}{\left|{a}\right|}\right)^{\prime }dx = \frac{dx}{\left|{a}\right|}$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \left|{a}\right| du$$$.
La integral se convierte en
$${\color{red}{\int{\frac{1}{a^{2} + x^{2}} d x}}} = {\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(u^{2} + 1\right)} d u}}}$$
Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{\left|{a}\right|}{a^{2}}$$$ y $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:
$${\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(u^{2} + 1\right)} d u}}} = {\color{red}{\frac{\left|{a}\right| \int{\frac{1}{u^{2} + 1} d u}}{a^{2}}}}$$
La integral de $$$\frac{1}{u^{2} + 1}$$$ es $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{\left|{a}\right| {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{a^{2}} = \frac{\left|{a}\right| {\color{red}{\operatorname{atan}{\left(u \right)}}}}{a^{2}}$$
Recordemos que $$$u=\frac{x}{\left|{a}\right|}$$$:
$$\frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{u}} \right)}}{a^{2}} = \frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{\frac{x}{\left|{a}\right|}}} \right)}}{a^{2}}$$
Por lo tanto,
$$\int{\frac{1}{a^{2} + x^{2}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}}$$
Añade la constante de integración:
$$\int{\frac{1}{a^{2} + x^{2}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}}+C$$
Respuesta
$$$\int \frac{1}{a^{2} + x^{2}}\, dx = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}} + C$$$A