Integralen av $$$\frac{1}{a^{2} + x^{2}}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$\frac{1}{a^{2} + x^{2}}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{1}{a^{2} + x^{2}}\, dx$$$.

Lösning

Låt $$$u=\frac{x}{\left|{a}\right|}$$$ vara.

$$$du=\left(\frac{x}{\left|{a}\right|}\right)^{\prime }dx = \frac{dx}{\left|{a}\right|}$$$ (stegen kan ses »), och vi har att $$$dx = \left|{a}\right| du$$$.

Integralen blir

$${\color{red}{\int{\frac{1}{a^{2} + x^{2}} d x}}} = {\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(u^{2} + 1\right)} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{\left|{a}\right|}{a^{2}}$$$ och $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:

$${\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(u^{2} + 1\right)} d u}}} = {\color{red}{\frac{\left|{a}\right| \int{\frac{1}{u^{2} + 1} d u}}{a^{2}}}}$$

Integralen av $$$\frac{1}{u^{2} + 1}$$$ är $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{\left|{a}\right| {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{a^{2}} = \frac{\left|{a}\right| {\color{red}{\operatorname{atan}{\left(u \right)}}}}{a^{2}}$$

Kom ihåg att $$$u=\frac{x}{\left|{a}\right|}$$$:

$$\frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{u}} \right)}}{a^{2}} = \frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{\frac{x}{\left|{a}\right|}}} \right)}}{a^{2}}$$

Alltså,

$$\int{\frac{1}{a^{2} + x^{2}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}}$$

Lägg till integrationskonstanten:

$$\int{\frac{1}{a^{2} + x^{2}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}}+C$$

Svar

$$$\int \frac{1}{a^{2} + x^{2}}\, dx = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}} + C$$$A


Please try a new game Rotatly