Intégrale de $$$\frac{1}{a^{2} + x^{2}}$$$ par rapport à $$$x$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{a^{2} + x^{2}}\, dx$$$.
Solution
Soit $$$u=\frac{x}{\left|{a}\right|}$$$.
Alors $$$du=\left(\frac{x}{\left|{a}\right|}\right)^{\prime }dx = \frac{dx}{\left|{a}\right|}$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \left|{a}\right| du$$$.
Ainsi,
$${\color{red}{\int{\frac{1}{a^{2} + x^{2}} d x}}} = {\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(u^{2} + 1\right)} d u}}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{\left|{a}\right|}{a^{2}}$$$ et $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$ :
$${\color{red}{\int{\frac{\left|{a}\right|}{a^{2} \left(u^{2} + 1\right)} d u}}} = {\color{red}{\frac{\left|{a}\right| \int{\frac{1}{u^{2} + 1} d u}}{a^{2}}}}$$
L’intégrale de $$$\frac{1}{u^{2} + 1}$$$ est $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$ :
$$\frac{\left|{a}\right| {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{a^{2}} = \frac{\left|{a}\right| {\color{red}{\operatorname{atan}{\left(u \right)}}}}{a^{2}}$$
Rappelons que $$$u=\frac{x}{\left|{a}\right|}$$$ :
$$\frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{u}} \right)}}{a^{2}} = \frac{\left|{a}\right| \operatorname{atan}{\left({\color{red}{\frac{x}{\left|{a}\right|}}} \right)}}{a^{2}}$$
Par conséquent,
$$\int{\frac{1}{a^{2} + x^{2}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{a^{2} + x^{2}} d x} = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}}+C$$
Réponse
$$$\int \frac{1}{a^{2} + x^{2}}\, dx = \frac{\left|{a}\right| \operatorname{atan}{\left(\frac{x}{\left|{a}\right|} \right)}}{a^{2}} + C$$$A