$$$z^{2}$$$ 的積分
您的輸入
求$$$\int z^{2}\, dz$$$。
解答
套用冪次法則 $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$${\color{red}{\int{z^{2} d z}}}={\color{red}{\frac{z^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{z^{3}}{3}\right)}}$$
因此,
$$\int{z^{2} d z} = \frac{z^{3}}{3}$$
加上積分常數:
$$\int{z^{2} d z} = \frac{z^{3}}{3}+C$$
答案
$$$\int z^{2}\, dz = \frac{z^{3}}{3} + C$$$A
Please try a new game Rotatly