Integral of $$$z^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int z^{2}\, dz$$$.
Solution
Apply the power rule $$$\int z^{n}\, dz = \frac{z^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$${\color{red}{\int{z^{2} d z}}}={\color{red}{\frac{z^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{z^{3}}{3}\right)}}$$
Therefore,
$$\int{z^{2} d z} = \frac{z^{3}}{3}$$
Add the constant of integration:
$$\int{z^{2} d z} = \frac{z^{3}}{3}+C$$
Answer
$$$\int z^{2}\, dz = \frac{z^{3}}{3} + C$$$A
Please try a new game Rotatly