$$$\frac{x^{2}}{\sqrt{x^{21}}}$$$ 的積分

此計算器將求出 $$$\frac{x^{2}}{\sqrt{x^{21}}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{x^{2}}{\sqrt{x^{21}}}\, dx$$$

解答

已將輸入重寫為:$$$\int{\frac{x^{2}}{\sqrt{x^{21}}} d x}=\int{\frac{1}{x^{\frac{17}{2}}} d x}$$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{17}{2}$$$

$${\color{red}{\int{\frac{1}{x^{\frac{17}{2}}} d x}}}={\color{red}{\int{x^{- \frac{17}{2}} d x}}}={\color{red}{\frac{x^{- \frac{17}{2} + 1}}{- \frac{17}{2} + 1}}}={\color{red}{\left(- \frac{2 x^{- \frac{15}{2}}}{15}\right)}}={\color{red}{\left(- \frac{2}{15 x^{\frac{15}{2}}}\right)}}$$

因此,

$$\int{\frac{1}{x^{\frac{17}{2}}} d x} = - \frac{2}{15 x^{\frac{15}{2}}}$$

加上積分常數:

$$\int{\frac{1}{x^{\frac{17}{2}}} d x} = - \frac{2}{15 x^{\frac{15}{2}}}+C$$

答案

$$$\int \frac{x^{2}}{\sqrt{x^{21}}}\, dx = - \frac{2}{15 x^{\frac{15}{2}}} + C$$$A


Please try a new game Rotatly