Integral of $$$\frac{x^{2}}{\sqrt{x^{21}}}$$$

The calculator will find the integral/antiderivative of $$$\frac{x^{2}}{\sqrt{x^{21}}}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{x^{2}}{\sqrt{x^{21}}}\, dx$$$.

Solution

The input is rewritten: $$$\int{\frac{x^{2}}{\sqrt{x^{21}}} d x}=\int{\frac{1}{x^{\frac{17}{2}}} d x}$$$.

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=- \frac{17}{2}$$$:

$${\color{red}{\int{\frac{1}{x^{\frac{17}{2}}} d x}}}={\color{red}{\int{x^{- \frac{17}{2}} d x}}}={\color{red}{\frac{x^{- \frac{17}{2} + 1}}{- \frac{17}{2} + 1}}}={\color{red}{\left(- \frac{2 x^{- \frac{15}{2}}}{15}\right)}}={\color{red}{\left(- \frac{2}{15 x^{\frac{15}{2}}}\right)}}$$

Therefore,

$$\int{\frac{1}{x^{\frac{17}{2}}} d x} = - \frac{2}{15 x^{\frac{15}{2}}}$$

Add the constant of integration:

$$\int{\frac{1}{x^{\frac{17}{2}}} d x} = - \frac{2}{15 x^{\frac{15}{2}}}+C$$

Answer

$$$\int \frac{x^{2}}{\sqrt{x^{21}}}\, dx = - \frac{2}{15 x^{\frac{15}{2}}} + C$$$A


Please try a new game Rotatly