$$$\frac{1}{\sqrt[3]{x}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\sqrt[3]{x}}\, dx$$$。
解答
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=- \frac{1}{3}$$$:
$${\color{red}{\int{\frac{1}{\sqrt[3]{x}} d x}}}={\color{red}{\int{x^{- \frac{1}{3}} d x}}}={\color{red}{\frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1}}}={\color{red}{\left(\frac{3 x^{\frac{2}{3}}}{2}\right)}}$$
因此,
$$\int{\frac{1}{\sqrt[3]{x}} d x} = \frac{3 x^{\frac{2}{3}}}{2}$$
加上積分常數:
$$\int{\frac{1}{\sqrt[3]{x}} d x} = \frac{3 x^{\frac{2}{3}}}{2}+C$$
答案
$$$\int \frac{1}{\sqrt[3]{x}}\, dx = \frac{3 x^{\frac{2}{3}}}{2} + C$$$A
Please try a new game Rotatly