Intégrale de $$$\frac{1}{\sqrt[3]{x}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{1}{\sqrt[3]{x}}\, dx$$$.
Solution
Appliquer la règle de puissance $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=- \frac{1}{3}$$$ :
$${\color{red}{\int{\frac{1}{\sqrt[3]{x}} d x}}}={\color{red}{\int{x^{- \frac{1}{3}} d x}}}={\color{red}{\frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1}}}={\color{red}{\left(\frac{3 x^{\frac{2}{3}}}{2}\right)}}$$
Par conséquent,
$$\int{\frac{1}{\sqrt[3]{x}} d x} = \frac{3 x^{\frac{2}{3}}}{2}$$
Ajouter la constante d'intégration :
$$\int{\frac{1}{\sqrt[3]{x}} d x} = \frac{3 x^{\frac{2}{3}}}{2}+C$$
Réponse
$$$\int \frac{1}{\sqrt[3]{x}}\, dx = \frac{3 x^{\frac{2}{3}}}{2} + C$$$A