$$$\tan{\left(x \right)} \sec^{p}{\left(x \right)}$$$$$$x$$$ 的積分

此計算器會求出 $$$\tan{\left(x \right)} \sec^{p}{\left(x \right)}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \tan{\left(x \right)} \sec^{p}{\left(x \right)}\, dx$$$

解答

$$$u=\sec{\left(x \right)}$$$

$$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$

該積分可改寫為

$${\color{red}{\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x}}} = {\color{red}{\int{u^{p - 1} d u}}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=p - 1$$$

$${\color{red}{\int{u^{p - 1} d u}}}={\color{red}{\frac{u^{\left(p - 1\right) + 1}}{\left(p - 1\right) + 1}}}={\color{red}{\frac{u^{p}}{p}}}$$

回顧一下 $$$u=\sec{\left(x \right)}$$$

$$\frac{{\color{red}{u}}^{p}}{p} = \frac{{\color{red}{\sec{\left(x \right)}}}^{p}}{p}$$

因此,

$$\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x} = \frac{\sec^{p}{\left(x \right)}}{p}$$

加上積分常數:

$$\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x} = \frac{\sec^{p}{\left(x \right)}}{p}+C$$

答案

$$$\int \tan{\left(x \right)} \sec^{p}{\left(x \right)}\, dx = \frac{\sec^{p}{\left(x \right)}}{p} + C$$$A


Please try a new game Rotatly