$$$\tan{\left(x \right)} \sec^{p}{\left(x \right)}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\tan{\left(x \right)} \sec^{p}{\left(x \right)}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \tan{\left(x \right)} \sec^{p}{\left(x \right)}\, dx$$$ を求めよ。

解答

$$$u=\sec{\left(x \right)}$$$ とする。

すると $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$(手順は»で確認できます)、$$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$ となります。

したがって、

$${\color{red}{\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x}}} = {\color{red}{\int{u^{p - 1} d u}}}$$

$$$n=p - 1$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$${\color{red}{\int{u^{p - 1} d u}}}={\color{red}{\frac{u^{\left(p - 1\right) + 1}}{\left(p - 1\right) + 1}}}={\color{red}{\frac{u^{p}}{p}}}$$

次のことを思い出してください $$$u=\sec{\left(x \right)}$$$:

$$\frac{{\color{red}{u}}^{p}}{p} = \frac{{\color{red}{\sec{\left(x \right)}}}^{p}}{p}$$

したがって、

$$\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x} = \frac{\sec^{p}{\left(x \right)}}{p}$$

積分定数を加える:

$$\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x} = \frac{\sec^{p}{\left(x \right)}}{p}+C$$

解答

$$$\int \tan{\left(x \right)} \sec^{p}{\left(x \right)}\, dx = \frac{\sec^{p}{\left(x \right)}}{p} + C$$$A


Please try a new game Rotatly