$$$\tan{\left(x \right)} \sec^{p}{\left(x \right)}$$$ 关于$$$x$$$的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \tan{\left(x \right)} \sec^{p}{\left(x \right)}\, dx$$$。
解答
设$$$u=\sec{\left(x \right)}$$$。
则$$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (步骤见»),并有$$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$。
所以,
$${\color{red}{\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x}}} = {\color{red}{\int{u^{p - 1} d u}}}$$
应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=p - 1$$$:
$${\color{red}{\int{u^{p - 1} d u}}}={\color{red}{\frac{u^{\left(p - 1\right) + 1}}{\left(p - 1\right) + 1}}}={\color{red}{\frac{u^{p}}{p}}}$$
回忆一下 $$$u=\sec{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{p}}{p} = \frac{{\color{red}{\sec{\left(x \right)}}}^{p}}{p}$$
因此,
$$\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x} = \frac{\sec^{p}{\left(x \right)}}{p}$$
加上积分常数:
$$\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x} = \frac{\sec^{p}{\left(x \right)}}{p}+C$$
答案
$$$\int \tan{\left(x \right)} \sec^{p}{\left(x \right)}\, dx = \frac{\sec^{p}{\left(x \right)}}{p} + C$$$A