Ολοκλήρωμα της $$$\tan{\left(x \right)} \sec^{p}{\left(x \right)}$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\tan{\left(x \right)} \sec^{p}{\left(x \right)}$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \tan{\left(x \right)} \sec^{p}{\left(x \right)}\, dx$$$.

Λύση

Έστω $$$u=\sec{\left(x \right)}$$$.

Τότε $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.

Το ολοκλήρωμα γίνεται

$${\color{red}{\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x}}} = {\color{red}{\int{u^{p - 1} d u}}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=p - 1$$$:

$${\color{red}{\int{u^{p - 1} d u}}}={\color{red}{\frac{u^{\left(p - 1\right) + 1}}{\left(p - 1\right) + 1}}}={\color{red}{\frac{u^{p}}{p}}}$$

Θυμηθείτε ότι $$$u=\sec{\left(x \right)}$$$:

$$\frac{{\color{red}{u}}^{p}}{p} = \frac{{\color{red}{\sec{\left(x \right)}}}^{p}}{p}$$

Επομένως,

$$\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x} = \frac{\sec^{p}{\left(x \right)}}{p}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\tan{\left(x \right)} \sec^{p}{\left(x \right)} d x} = \frac{\sec^{p}{\left(x \right)}}{p}+C$$

Απάντηση

$$$\int \tan{\left(x \right)} \sec^{p}{\left(x \right)}\, dx = \frac{\sec^{p}{\left(x \right)}}{p} + C$$$A


Please try a new game Rotatly