$$$- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}$$$ 的積分

此計算器將求出 $$$- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx$$$

解答

逐項積分:

$${\color{red}{\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x}}} = {\color{red}{\left(\int{\frac{\cot{\left(x \right)}}{\sin{\left(x \right)}} d x} - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}\right)}}$$

重寫被積函數:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\frac{\cot{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cot{\left(x \right)} \csc{\left(x \right)} d x}}}$$

$$$u=\csc{\left(x \right)}$$$

$$$du=\left(\csc{\left(x \right)}\right)^{\prime }dx = - \cot{\left(x \right)} \csc{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\cot{\left(x \right)} \csc{\left(x \right)} dx = - du$$$

因此,

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cot{\left(x \right)} \csc{\left(x \right)} d x}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(-1\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$$$$f{\left(u \right)} = 1$$$

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(-1\right)d u}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\left(- \int{1 d u}\right)}}$$

配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\int{1 d u}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{u}}$$

回顧一下 $$$u=\csc{\left(x \right)}$$$

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{u}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\csc{\left(x \right)}}}$$

$$$u=\sin{\left(x \right)}$$$

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (步驟見»),並可得 $$$\cos{\left(x \right)} dx = du$$$

因此,

$$- \csc{\left(x \right)} - {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}} = - \csc{\left(x \right)} - {\color{red}{\int{u d u}}}$$

套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=1$$$

$$- \csc{\left(x \right)} - {\color{red}{\int{u d u}}}=- \csc{\left(x \right)} - {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- \csc{\left(x \right)} - {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

回顧一下 $$$u=\sin{\left(x \right)}$$$

$$- \csc{\left(x \right)} - \frac{{\color{red}{u}}^{2}}{2} = - \csc{\left(x \right)} - \frac{{\color{red}{\sin{\left(x \right)}}}^{2}}{2}$$

因此,

$$\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}$$

加上積分常數:

$$\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}+C$$

答案

$$$\int \left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx = \left(- \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly