Integralen av $$$- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx$$$.

Lösning

Integrera termvis:

$${\color{red}{\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x}}} = {\color{red}{\left(\int{\frac{\cot{\left(x \right)}}{\sin{\left(x \right)}} d x} - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}\right)}}$$

Skriv om integranden:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\frac{\cot{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cot{\left(x \right)} \csc{\left(x \right)} d x}}}$$

Låt $$$u=\csc{\left(x \right)}$$$ vara.

$$$du=\left(\csc{\left(x \right)}\right)^{\prime }dx = - \cot{\left(x \right)} \csc{\left(x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\cot{\left(x \right)} \csc{\left(x \right)} dx = - du$$$.

Integralen kan omskrivas som

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cot{\left(x \right)} \csc{\left(x \right)} d x}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(-1\right)d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=-1$$$ och $$$f{\left(u \right)} = 1$$$:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(-1\right)d u}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\left(- \int{1 d u}\right)}}$$

Tillämpa konstantregeln $$$\int c\, du = c u$$$ med $$$c=1$$$:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\int{1 d u}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{u}}$$

Kom ihåg att $$$u=\csc{\left(x \right)}$$$:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{u}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\csc{\left(x \right)}}}$$

Låt $$$u=\sin{\left(x \right)}$$$ vara.

$$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (stegen kan ses »), och vi har att $$$\cos{\left(x \right)} dx = du$$$.

Integralen kan omskrivas som

$$- \csc{\left(x \right)} - {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}} = - \csc{\left(x \right)} - {\color{red}{\int{u d u}}}$$

Tillämpa potensregeln $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:

$$- \csc{\left(x \right)} - {\color{red}{\int{u d u}}}=- \csc{\left(x \right)} - {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- \csc{\left(x \right)} - {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

Kom ihåg att $$$u=\sin{\left(x \right)}$$$:

$$- \csc{\left(x \right)} - \frac{{\color{red}{u}}^{2}}{2} = - \csc{\left(x \right)} - \frac{{\color{red}{\sin{\left(x \right)}}}^{2}}{2}$$

Alltså,

$$\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}$$

Lägg till integrationskonstanten:

$$\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}+C$$

Svar

$$$\int \left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx = \left(- \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly