Integral de $$$- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}$$$

La calculadora encontrará la integral/antiderivada de $$$- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x}}} = {\color{red}{\left(\int{\frac{\cot{\left(x \right)}}{\sin{\left(x \right)}} d x} - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x}\right)}}$$

Reescribe el integrando:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\frac{\cot{\left(x \right)}}{\sin{\left(x \right)}} d x}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cot{\left(x \right)} \csc{\left(x \right)} d x}}}$$

Sea $$$u=\csc{\left(x \right)}$$$.

Entonces $$$du=\left(\csc{\left(x \right)}\right)^{\prime }dx = - \cot{\left(x \right)} \csc{\left(x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\cot{\left(x \right)} \csc{\left(x \right)} dx = - du$$$.

La integral puede reescribirse como

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cot{\left(x \right)} \csc{\left(x \right)} d x}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(-1\right)d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ y $$$f{\left(u \right)} = 1$$$:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(-1\right)d u}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\left(- \int{1 d u}\right)}}$$

Aplica la regla de la constante $$$\int c\, du = c u$$$ con $$$c=1$$$:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\int{1 d u}}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{u}}$$

Recordemos que $$$u=\csc{\left(x \right)}$$$:

$$- \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{u}} = - \int{\sin{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\csc{\left(x \right)}}}$$

Sea $$$u=\sin{\left(x \right)}$$$.

Entonces $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\cos{\left(x \right)} dx = du$$$.

Por lo tanto,

$$- \csc{\left(x \right)} - {\color{red}{\int{\sin{\left(x \right)} \cos{\left(x \right)} d x}}} = - \csc{\left(x \right)} - {\color{red}{\int{u d u}}}$$

Aplica la regla de la potencia $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$- \csc{\left(x \right)} - {\color{red}{\int{u d u}}}=- \csc{\left(x \right)} - {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}=- \csc{\left(x \right)} - {\color{red}{\left(\frac{u^{2}}{2}\right)}}$$

Recordemos que $$$u=\sin{\left(x \right)}$$$:

$$- \csc{\left(x \right)} - \frac{{\color{red}{u}}^{2}}{2} = - \csc{\left(x \right)} - \frac{{\color{red}{\sin{\left(x \right)}}}^{2}}{2}$$

Por lo tanto,

$$\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}$$

Añade la constante de integración:

$$\int{\left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)d x} = - \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}+C$$

Respuesta

$$$\int \left(- \sin{\left(x \right)} \cos{\left(x \right)} + \frac{\cot{\left(x \right)}}{\sin{\left(x \right)}}\right)\, dx = \left(- \frac{\sin^{2}{\left(x \right)}}{2} - \csc{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly