$$$\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}$$$ 的積分

此計算器將求出 $$$\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}\, dx$$$

解答

$$$x=\cosh{\left(u \right)}$$$

$$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$(步驟見»)。

此外,由此可得 $$$u=\operatorname{acosh}{\left(x \right)}$$$

所以,

$$$\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} = \frac{1}{\left(\cosh^{2}{\left( u \right)} - 1\right)^{\frac{3}{2}}}$$$

使用恆等式 $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$

$$$\frac{1}{\left(\cosh^{2}{\left( u \right)} - 1\right)^{\frac{3}{2}}}=\frac{1}{\left(\sinh^{2}{\left( u \right)}\right)^{\frac{3}{2}}}$$$

假設 $$$\sinh{\left( u \right)} \ge 0$$$,可得如下:

$$$\frac{1}{\left(\sinh^{2}{\left( u \right)}\right)^{\frac{3}{2}}} = \frac{1}{\sinh^{3}{\left( u \right)}}$$$

因此,

$${\color{red}{\int{\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sinh^{2}{\left(u \right)}} d u}}}$$

將被積函數改寫為以雙曲餘割函數表示:

$${\color{red}{\int{\frac{1}{\sinh^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\operatorname{csch}^{2}{\left(u \right)} d u}}}$$

$$$\operatorname{csch}^{2}{\left(u \right)}$$$ 的積分是 $$$\int{\operatorname{csch}^{2}{\left(u \right)} d u} = - \coth{\left(u \right)}$$$

$${\color{red}{\int{\operatorname{csch}^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \coth{\left(u \right)}\right)}}$$

回顧一下 $$$u=\operatorname{acosh}{\left(x \right)}$$$

$$- \coth{\left({\color{red}{u}} \right)} = - \coth{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}$$

因此,

$$\int{\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} d x} = - \frac{x}{\sqrt{x - 1} \sqrt{x + 1}}$$

加上積分常數:

$$\int{\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} d x} = - \frac{x}{\sqrt{x - 1} \sqrt{x + 1}}+C$$

答案

$$$\int \frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}\, dx = - \frac{x}{\sqrt{x - 1} \sqrt{x + 1}} + C$$$A


Please try a new game Rotatly