Ολοκλήρωμα του $$$\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}\, dx$$$.
Λύση
Έστω $$$x=\cosh{\left(u \right)}$$$.
Τότε $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (τα βήματα μπορούν να προβληθούν »).
Επίσης, έπεται ότι $$$u=\operatorname{acosh}{\left(x \right)}$$$.
Επομένως,
$$$\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} = \frac{1}{\left(\cosh^{2}{\left( u \right)} - 1\right)^{\frac{3}{2}}}$$$
Χρησιμοποιήστε την ταυτότητα $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\left(\cosh^{2}{\left( u \right)} - 1\right)^{\frac{3}{2}}}=\frac{1}{\left(\sinh^{2}{\left( u \right)}\right)^{\frac{3}{2}}}$$$
Υποθέτοντας ότι $$$\sinh{\left( u \right)} \ge 0$$$, προκύπτουν τα ακόλουθα:
$$$\frac{1}{\left(\sinh^{2}{\left( u \right)}\right)^{\frac{3}{2}}} = \frac{1}{\sinh^{3}{\left( u \right)}}$$$
Επομένως,
$${\color{red}{\int{\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} d x}}} = {\color{red}{\int{\frac{1}{\sinh^{2}{\left(u \right)}} d u}}}$$
Εκφράστε τον ολοκληρωτέο με όρους της υπερβολικής συντέμνουσας:
$${\color{red}{\int{\frac{1}{\sinh^{2}{\left(u \right)}} d u}}} = {\color{red}{\int{\operatorname{csch}^{2}{\left(u \right)} d u}}}$$
Το ολοκλήρωμα του $$$\operatorname{csch}^{2}{\left(u \right)}$$$ είναι $$$\int{\operatorname{csch}^{2}{\left(u \right)} d u} = - \coth{\left(u \right)}$$$:
$${\color{red}{\int{\operatorname{csch}^{2}{\left(u \right)} d u}}} = {\color{red}{\left(- \coth{\left(u \right)}\right)}}$$
Θυμηθείτε ότι $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$- \coth{\left({\color{red}{u}} \right)} = - \coth{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}$$
Επομένως,
$$\int{\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} d x} = - \frac{x}{\sqrt{x - 1} \sqrt{x + 1}}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}} d x} = - \frac{x}{\sqrt{x - 1} \sqrt{x + 1}}+C$$
Απάντηση
$$$\int \frac{1}{\left(x^{2} - 1\right)^{\frac{3}{2}}}\, dx = - \frac{x}{\sqrt{x - 1} \sqrt{x + 1}} + C$$$A