$$$\frac{1}{12 x}$$$ 的積分
您的輸入
求$$$\int \frac{1}{12 x}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{1}{12}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x}$$$:
$${\color{red}{\int{\frac{1}{12 x} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{12}\right)}}$$
$$$\frac{1}{x}$$$ 的積分是 $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{x} d x}}}}{12} = \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{12}$$
因此,
$$\int{\frac{1}{12 x} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{12}$$
加上積分常數:
$$\int{\frac{1}{12 x} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{12}+C$$
答案
$$$\int \frac{1}{12 x}\, dx = \frac{\ln\left(\left|{x}\right|\right)}{12} + C$$$A
Please try a new game Rotatly