Integrale di $$$\frac{1}{12 x}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{1}{12 x}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{1}{12 x}\, dx$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\frac{1}{12}$$$ e $$$f{\left(x \right)} = \frac{1}{x}$$$:

$${\color{red}{\int{\frac{1}{12 x} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{12}\right)}}$$

L'integrale di $$$\frac{1}{x}$$$ è $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{x} d x}}}}{12} = \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{12}$$

Pertanto,

$$\int{\frac{1}{12 x} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{12}$$

Aggiungi la costante di integrazione:

$$\int{\frac{1}{12 x} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{12}+C$$

Risposta

$$$\int \frac{1}{12 x}\, dx = \frac{\ln\left(\left|{x}\right|\right)}{12} + C$$$A


Please try a new game Rotatly