$$$\frac{1}{\sqrt{25 - x^{2}}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\sqrt{25 - x^{2}}}\, dx$$$。
解答
令 $$$x=5 \sin{\left(u \right)}$$$。
則 $$$dx=\left(5 \sin{\left(u \right)}\right)^{\prime }du = 5 \cos{\left(u \right)} du$$$(步驟見»)。
此外,由此可得 $$$u=\operatorname{asin}{\left(\frac{x}{5} \right)}$$$。
因此,
$$$\frac{1}{\sqrt{25 - x^{2}}} = \frac{1}{\sqrt{25 - 25 \sin^{2}{\left( u \right)}}}$$$
使用恆等式 $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{25 - 25 \sin^{2}{\left( u \right)}}}=\frac{1}{5 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{5 \sqrt{\cos^{2}{\left( u \right)}}}$$$
假設 $$$\cos{\left( u \right)} \ge 0$$$,可得如下:
$$$\frac{1}{5 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{5 \cos{\left( u \right)}}$$$
積分可以改寫為
$${\color{red}{\int{\frac{1}{\sqrt{25 - x^{2}}} d x}}} = {\color{red}{\int{1 d u}}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, du = c u$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
回顧一下 $$$u=\operatorname{asin}{\left(\frac{x}{5} \right)}$$$:
$${\color{red}{u}} = {\color{red}{\operatorname{asin}{\left(\frac{x}{5} \right)}}}$$
因此,
$$\int{\frac{1}{\sqrt{25 - x^{2}}} d x} = \operatorname{asin}{\left(\frac{x}{5} \right)}$$
加上積分常數:
$$\int{\frac{1}{\sqrt{25 - x^{2}}} d x} = \operatorname{asin}{\left(\frac{x}{5} \right)}+C$$
答案
$$$\int \frac{1}{\sqrt{25 - x^{2}}}\, dx = \operatorname{asin}{\left(\frac{x}{5} \right)} + C$$$A