Integral of $$$\frac{1}{\sqrt{25 - x^{2}}}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{1}{\sqrt{25 - x^{2}}}\, dx$$$.
Solution
Let $$$x=5 \sin{\left(u \right)}$$$.
Then $$$dx=\left(5 \sin{\left(u \right)}\right)^{\prime }du = 5 \cos{\left(u \right)} du$$$ (steps can be seen »).
Also, it follows that $$$u=\operatorname{asin}{\left(\frac{x}{5} \right)}$$$.
Integrand becomes
$$$\frac{1}{\sqrt{25 - x^{2}}} = \frac{1}{\sqrt{25 - 25 \sin^{2}{\left( u \right)}}}$$$
Use the identity $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{25 - 25 \sin^{2}{\left( u \right)}}}=\frac{1}{5 \sqrt{1 - \sin^{2}{\left( u \right)}}}=\frac{1}{5 \sqrt{\cos^{2}{\left( u \right)}}}$$$
Assuming that $$$\cos{\left( u \right)} \ge 0$$$, we obtain the following:
$$$\frac{1}{5 \sqrt{\cos^{2}{\left( u \right)}}} = \frac{1}{5 \cos{\left( u \right)}}$$$
Therefore,
$${\color{red}{\int{\frac{1}{\sqrt{25 - x^{2}}} d x}}} = {\color{red}{\int{1 d u}}}$$
Apply the constant rule $$$\int c\, du = c u$$$ with $$$c=1$$$:
$${\color{red}{\int{1 d u}}} = {\color{red}{u}}$$
Recall that $$$u=\operatorname{asin}{\left(\frac{x}{5} \right)}$$$:
$${\color{red}{u}} = {\color{red}{\operatorname{asin}{\left(\frac{x}{5} \right)}}}$$
Therefore,
$$\int{\frac{1}{\sqrt{25 - x^{2}}} d x} = \operatorname{asin}{\left(\frac{x}{5} \right)}$$
Add the constant of integration:
$$\int{\frac{1}{\sqrt{25 - x^{2}}} d x} = \operatorname{asin}{\left(\frac{x}{5} \right)}+C$$
Answer
$$$\int \frac{1}{\sqrt{25 - x^{2}}}\, dx = \operatorname{asin}{\left(\frac{x}{5} \right)} + C$$$A