$$$x + y + z$$$ 关于$$$x$$$的积分

该计算器将求出$$$x + y + z$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(x + y + z\right)\, dx$$$

解答

逐项积分:

$${\color{red}{\int{\left(x + y + z\right)d x}}} = {\color{red}{\left(\int{x d x} + \int{y d x} + \int{z d x}\right)}}$$

应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=1$$$

$$\int{y d x} + \int{z d x} + {\color{red}{\int{x d x}}}=\int{y d x} + \int{z d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{y d x} + \int{z d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=y$$$

$$\frac{x^{2}}{2} + \int{z d x} + {\color{red}{\int{y d x}}} = \frac{x^{2}}{2} + \int{z d x} + {\color{red}{x y}}$$

应用常数法则 $$$\int c\, dx = c x$$$,使用 $$$c=z$$$

$$\frac{x^{2}}{2} + x y + {\color{red}{\int{z d x}}} = \frac{x^{2}}{2} + x y + {\color{red}{x z}}$$

因此,

$$\int{\left(x + y + z\right)d x} = \frac{x^{2}}{2} + x y + x z$$

化简:

$$\int{\left(x + y + z\right)d x} = \frac{x \left(x + 2 y + 2 z\right)}{2}$$

加上积分常数:

$$\int{\left(x + y + z\right)d x} = \frac{x \left(x + 2 y + 2 z\right)}{2}+C$$

答案

$$$\int \left(x + y + z\right)\, dx = \frac{x \left(x + 2 y + 2 z\right)}{2} + C$$$A


Please try a new game Rotatly