Integral de $$$x + y + z$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$x + y + z$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \left(x + y + z\right)\, dx$$$.

Solución

Integra término a término:

$${\color{red}{\int{\left(x + y + z\right)d x}}} = {\color{red}{\left(\int{x d x} + \int{y d x} + \int{z d x}\right)}}$$

Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:

$$\int{y d x} + \int{z d x} + {\color{red}{\int{x d x}}}=\int{y d x} + \int{z d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{y d x} + \int{z d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=y$$$:

$$\frac{x^{2}}{2} + \int{z d x} + {\color{red}{\int{y d x}}} = \frac{x^{2}}{2} + \int{z d x} + {\color{red}{x y}}$$

Aplica la regla de la constante $$$\int c\, dx = c x$$$ con $$$c=z$$$:

$$\frac{x^{2}}{2} + x y + {\color{red}{\int{z d x}}} = \frac{x^{2}}{2} + x y + {\color{red}{x z}}$$

Por lo tanto,

$$\int{\left(x + y + z\right)d x} = \frac{x^{2}}{2} + x y + x z$$

Simplificar:

$$\int{\left(x + y + z\right)d x} = \frac{x \left(x + 2 y + 2 z\right)}{2}$$

Añade la constante de integración:

$$\int{\left(x + y + z\right)d x} = \frac{x \left(x + 2 y + 2 z\right)}{2}+C$$

Respuesta

$$$\int \left(x + y + z\right)\, dx = \frac{x \left(x + 2 y + 2 z\right)}{2} + C$$$A


Please try a new game Rotatly