Integral of $$$x + y + z$$$ with respect to $$$x$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(x + y + z\right)\, dx$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(x + y + z\right)d x}}} = {\color{red}{\left(\int{x d x} + \int{y d x} + \int{z d x}\right)}}$$
Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=1$$$:
$$\int{y d x} + \int{z d x} + {\color{red}{\int{x d x}}}=\int{y d x} + \int{z d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{y d x} + \int{z d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=y$$$:
$$\frac{x^{2}}{2} + \int{z d x} + {\color{red}{\int{y d x}}} = \frac{x^{2}}{2} + \int{z d x} + {\color{red}{x y}}$$
Apply the constant rule $$$\int c\, dx = c x$$$ with $$$c=z$$$:
$$\frac{x^{2}}{2} + x y + {\color{red}{\int{z d x}}} = \frac{x^{2}}{2} + x y + {\color{red}{x z}}$$
Therefore,
$$\int{\left(x + y + z\right)d x} = \frac{x^{2}}{2} + x y + x z$$
Simplify:
$$\int{\left(x + y + z\right)d x} = \frac{x \left(x + 2 y + 2 z\right)}{2}$$
Add the constant of integration:
$$\int{\left(x + y + z\right)d x} = \frac{x \left(x + 2 y + 2 z\right)}{2}+C$$
Answer
$$$\int \left(x + y + z\right)\, dx = \frac{x \left(x + 2 y + 2 z\right)}{2} + C$$$A