Ολοκλήρωμα της $$$x + y + z$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$x + y + z$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(x + y + z\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(x + y + z\right)d x}}} = {\color{red}{\left(\int{x d x} + \int{y d x} + \int{z d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$\int{y d x} + \int{z d x} + {\color{red}{\int{x d x}}}=\int{y d x} + \int{z d x} + {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{y d x} + \int{z d x} + {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=y$$$:

$$\frac{x^{2}}{2} + \int{z d x} + {\color{red}{\int{y d x}}} = \frac{x^{2}}{2} + \int{z d x} + {\color{red}{x y}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=z$$$:

$$\frac{x^{2}}{2} + x y + {\color{red}{\int{z d x}}} = \frac{x^{2}}{2} + x y + {\color{red}{x z}}$$

Επομένως,

$$\int{\left(x + y + z\right)d x} = \frac{x^{2}}{2} + x y + x z$$

Απλοποιήστε:

$$\int{\left(x + y + z\right)d x} = \frac{x \left(x + 2 y + 2 z\right)}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(x + y + z\right)d x} = \frac{x \left(x + 2 y + 2 z\right)}{2}+C$$

Απάντηση

$$$\int \left(x + y + z\right)\, dx = \frac{x \left(x + 2 y + 2 z\right)}{2} + C$$$A


Please try a new game Rotatly