$$$x^{- p}$$$ 关于$$$x$$$的积分
您的输入
求$$$\int x^{- p}\, dx$$$。
解答
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=- p$$$:
$${\color{red}{\int{x^{- p} d x}}}={\color{red}{\frac{x^{1 - p}}{1 - p}}}={\color{red}{\frac{x^{1 - p}}{1 - p}}}$$
因此,
$$\int{x^{- p} d x} = \frac{x^{1 - p}}{1 - p}$$
化简:
$$\int{x^{- p} d x} = - \frac{x^{1 - p}}{p - 1}$$
加上积分常数:
$$\int{x^{- p} d x} = - \frac{x^{1 - p}}{p - 1}+C$$
答案
$$$\int x^{- p}\, dx = - \frac{x^{1 - p}}{p - 1} + C$$$A
Please try a new game Rotatly